Modelling and analysis of bacterial tracks suggest an active reorientation mechanism in Rhodobacter sphaeroides.

نویسندگان

  • Gabriel Rosser
  • Ruth E Baker
  • Judith P Armitage
  • Alexander G Fletcher
چکیده

Most free-swimming bacteria move in approximately straight lines, interspersed with random reorientation phases. A key open question concerns varying mechanisms by which reorientation occurs. We combine mathematical modelling with analysis of a large tracking dataset to study the poorly understood reorientation mechanism in the monoflagellate species Rhodobacter sphaeroides. The flagellum on this species rotates counterclockwise to propel the bacterium, periodically ceasing rotation to enable reorientation. When rotation restarts the cell body usually points in a new direction. It has been assumed that the new direction is simply the result of Brownian rotation. We consider three variants of a self-propelled particle model of bacterial motility. The first considers rotational diffusion only, corresponding to a non-chemotactic mutant strain. Two further models incorporate stochastic reorientations, describing 'run-and-tumble' motility. We derive expressions for key summary statistics and simulate each model using a stochastic computational algorithm. We also discuss the effect of cell geometry on rotational diffusion. Working with a previously published tracking dataset, we compare predictions of the models with data on individual stopping events in R. sphaeroides. This provides strong evidence that this species undergoes some form of active reorientation rather than simple reorientation by Brownian rotation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Methods for Analysing Bacterial Tracks Reveal Persistence in Rhodobacter sphaeroides

Tracking bacteria using video microscopy is a powerful experimental approach to probe their motile behaviour. The trajectories obtained contain much information relating to the complex patterns of bacterial motility. However, methods for the quantitative analysis of such data are limited. Most swimming bacteria move in approximately straight lines, interspersed with random reorientation phases....

متن کامل

Response kinetics in the complex chemotaxis signalling pathway of Rhodobacter sphaeroides.

Chemotaxis is one of the best-characterized signalling systems in biology. It is the mechanism by which bacteria move towards optimal environments and is implicated in biofilm formation, pathogenesis and symbiosis. The properties of the bacterial chemosensory response have been described in detail for the single chemosensory pathway of Escherichia coli. We have characterized the properties of t...

متن کامل

A novel mechanism for the regulation of photosynthesis gene expression by the TspO outer membrane protein of Rhodobacter sphaeroides 2.4.1.

A bacterial homolog of the mammalian mitochondrial benzodiazepine receptor, the tryptophan-rich sensory protein (TspO) has been previously demonstrated to negatively affect the transcriptional expression of several photosynthesis genes of Rhodobacter sphaeroides. To identify components of the signal transduction pathway from the outer membrane-localized TspO to the DNA-active transcription fact...

متن کامل

Thiazolylidene-ketonitriles are efficient inhibitors of electron transport in reaction centers from photosynthetic bacteria.

Thiazolylidene-ketonitriles are efficient inhibitors of photosynthetic electron flow in reaction centers from either Rhodobacter sphaeroides or Rhodobacter capsulatus. Some compounds of this class exhibit a higher inhibitor potency in the bacterial system as compared to photosystem II. Up to now, photosystem II inhibitors were generally less active in photosynthetic bacteria. An azido-thiazolyl...

متن کامل

TlpC, a novel chemotaxis protein in Rhodobacter sphaeroides, localizes to a discrete region in the cytoplasm.

TlpC is encoded in the second chemotaxis operon of Rhodobacter sphaeroides. This protein shows some homology to membrane-spanning chemoreceptors of many bacterial species but, unlike these, is essential for R. sphaeroides chemotaxis to all compounds tested. Genomic replacement of tlpC with a C-terminal gfp fusion demonstrated that TlpC localized to a discrete cluster within the cytoplasm. Immun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 11 97  شماره 

صفحات  -

تاریخ انتشار 2014